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Abstract. We have obtained an analytic expression for thek-dependence of the excitation
energy gap for an arbitrary doubleS = 1/2 spin chain by using the non-local unitary trans-
formation and the variational method. We check that it explains the gap behaviour of various
systems, which include the Haldane system and the dimer system in both extreme limits, and also
the ladder model and the Majumdar–Ghosh model. The string order parameter, the dimer order
parameter, and the local spin value are also calculated in the ground state. The ground-state
energy exhibits a great stabilization by an antiferromagnetic bond dimerization, which might be
realized in various new compounds. We also mention the relation of the convergence to the
Haldane state with the spin-exchange symmetry of the model. The excited state has one domain
wall of a local triplet type except in the vicinity of the Majumdar–Ghosh point, where a local
triplet is decomposed into twoS = 1/2 free spins moving among the singlet dimers.

1. Introduction

The low-dimensional quantum systems with excitation energy gaps have been attracting
much interest both theoretically and experimentally [1], though the interest had only been
from the theoretical side until recently. The simplest theoretical spin model may be the dimer
model that consists of independent pairs ofS = 1/2 spins connected by an antiferromagnetic
(AF) interaction bond. The ground state is a product of a singlet dimer state on each bond,
and the excitation gap is the singlet–triplet dimer gap. The Majumdar–Ghosh (M–G) model
[2, 3] and the1 chain model [4–6] also realize the perfect singlet dimer ground state,
and thus the gap is intrinsically the dimer gap. Another well-known model that has a
different origin of the gap is theS = 1 AF spin chain, the so-called Haldane system [7].
The ladder model [8–11] and the bond-alternation model [8, 12–14] interpolate between
the dimer model and the Haldane system on changing the strength of the interaction bonds
as a parameter from+∞ to −∞. Therefore, these models were investigated mainly to
clarify the details of the Haldane system. Our understanding up to now is that the dimer
state continuously changes to theS = 1 Haldane state without any explicit phase transition
occurring [8–14]. On the other hand, the phase transition becomes of first order in a ladder
model with both interactions diagonal [15].

The situation has changed now that it has become possible to synthesize various
compounds that actually realize the above theoretical models [16–19]. For example,
magnetic susceptibility measurements on KCuCl3 [17] and on CaV2O5 [18] indicate a
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spin-gap behaviour, and the experimental data are considered to be explained through the
frustrated double-spin-chain model [20]. In such an analysis, we need to estimate the gap as
a function of the strength of the interaction bonds. Then the susceptibility can be calculated
by using the gap value [21].

σ σ σ1 2 3 σn

τ τ τ1 2 3 τ n

J2J2 J3

J1

J1

τn+1

σn+1

Figure 1. The shape of the general double-spin-chain model that we treat in this paper.

In this paper, we consider the generalized double-spin-chain system as defined by its
next-nearest-neighbour interaction,J1, and the alternating nearest-neighbour interactions,J2

andJ3, as follows:

H =
N∑
n=1

J1(σn · σn+1+ τ n · τ n+1)+ J2σn · τ n + J3τ n · σn+1. (1)

Here, N is the linear size of the system, and|σ| = |τ | = 1/2. Figure 1 shows the
lattice described. The system is reduced to the M–G model with a choice of parameter set
(J1, J2, J3) = (0.5, 1, 1), the isotropic ladder model with(J1, J2, J3) = (1, 1, 0), or (1, 0, 1),
and theS = 1 AF chain in the limitJ2→ −∞. The case withJ1 = 0 corresponds to the
bond-alternation model for a single chain. Recently, the string order parameter [22] and
the energy for the ground state of this system have been calculated by the matrix-product
method [23]. Here, we make use of the non-local unitary transformation [24–26], and
give explicit expressions for the ground-state energy, the excitation gap, the string order
parameter, the dimer order parameter, the local spin value in the ground state, and the
domain wall spin value in the excited state for arbitrary(J1, J2, J3). This transformation
is an adaptation of the Kennedy–Tasaki transformation [24] of theS = 1 system to the
S = 1/2 double-spin-chain systems, and is known to be powerful when the ground state is
either in the Haldane state or in the state with strong dimer correlation.

In section 2, we introduce the transformation and the variational method employed in
this paper. Then the energy, a local bond-spin value, and the order parameters for the
ground state are estimated, and compared with the numerical diagonalization results for the
N = 12 lattice. Section 3 describes the excited states, where we consider two types of
variation. One is the local triplet domain wall excitation, for which we give an explicit
form for the whole phase space. The other one is what we call the kink–antikink excitation,
which is governed by twoS = 1/2 free spins moving among the perfect singlet dimers
[26, 27]. This type is the elementary excitation near the M–G point.

2. The ground state

We first rewrite the Hamiltonian, equation (1), using the non-local unitary transformation
[24–26]. The transformation is defined byU in the following:

U =
N∏
n=1

Un (2)

Un = P+n + P−n exp(iπSxn ) (3)
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P±n =
1

2

[
1± exp

(
iπ

n−1∑
k=1

Szk

)]
(4)

Sn = σn + τ n (5)

whereP+n (P−n ) is the operator for projection onto states with the even (odd) numbers of
Szi = ±1 for i 6 n− 1. Then the Hamiltonian (1) is transformed as

U−1HU =
N∑
n=1

J1(−σxn τ xn+1− τ znσ zn+1− 4σxn τ
x
n+1τ

z
nσ

z
n+1)

+ J1(−τ xn σ xn+1− σ znτ zn+1− 4τ xn σ
x
n+1σ

z
nτ

z
n+1)

+ J3(−τ xn τ xn+1− σ znσ zn+1− 4τ xn τ
x
n+1σ

z
nσ

z
n+1)+ J2σn · τ n. (6)

We consider the following variational basis for the ground state of this Hamiltonian:

|90〉 =
N∏
n=1

|n(α, β, γ, b)〉 =
N∏
n=1

(b|Tn〉 +
√

1− b2|Sn〉) (7)

|Sn〉 = (|↑,↓〉 − |↓,↑〉)/
√

2 (8)

|Tn〉 = α|↑,↑〉 + β(|↑,↓〉 + |↓,↑〉)/
√

2+ γ |↓,↓〉. (9)

The |↑,↑〉 are the states of|σ zn , τ zn〉. b, α, β, andγ are the real variational parameters, and
satisfy the normalization conditionα2 + β2 + γ 2 = 1. These parameters are supposed to
be independent ofn, since we consider the uniform ground state. In this sense, the present
analysis is variational.

A state withb = 0 is a singlet dimer state on theσn–τ n bond, a state withb = √3/2
is the other singlet dimer state on theσn+1–τ n bond, and a state withb = 1 corresponds
to the pure VBS state on theσn–τ n bond. It should be noted that our approximation is
not the single-site approximation for the original Hamiltonian, so theσn+1–τ n dimer can
be represented by equation (7) withb = √3/2.

The energy expectation value is calculated as

〈90|HN |90〉 = J2

(
b2− 3

4

)
− (2J1+ J3)b

4

[
β2(α2+ γ 2)+ (α

2− γ 2)2

4

]
+ (2J1− J3)b

2(1− b2)− 3J3b
3
√

1− b2β(α2− γ 2). (10)

We can easily find this minimum value under the constraintα2 + β2 + γ 2 = 1, by using
the Lagrange multiplier. The energy expectation valueε0 is

ε0 =
(
J2− 8

3
b2J1

)(
b2− 3

4

)
− b

2

3
J3(b +

√
3(1− b2))2 (11)

with four possible choices of the parameters(α, β, γ ) as follows:

(α, β, γ ) = (±
√

2/3,
√

1/3, 0), (0,−
√

1/3,±
√

2/3) (12)

andb determined implicitly through

J2 =
(
b2− 3

4

)(
4

3
(4J1− J3)− 4bJ3√

3(1− b2)

)
+ 2J1 (13)

or

b = 0. (14)

The fourfold degeneracy in the choice of(α, β, γ ) corresponds to the degeneracy of the
edge states [13, 25, 28]. A state withb = 0 is a trivial singlet dimer ground state atJ2 = ∞.
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Figure 2. The ground-state energy for (a)J1 = 0 andJ3 = 1 (the bond-alternation model),
(b) J1 = 0.5 andJ3 = 1 (including the M–G model atJ2 = 1), and (c)J1 = 1 andJ3 = 1
(including the isotropic ladder model atJ2 = 0). Circles denote the numerical diagonalization
results forN = 12, and lines show the variational estimates.

The other one, equation (13), represents a non-trivial state that will be the ground state for
most of the parameter space. We solved equation (13) numerically by the bisection method
for arbitrary(J1, J2, J3).

Before going through the details of the following variational results, let us notice that
the system possesses the symmetry which exchangesJ2-bonds andJ3-bonds. It does not
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matter when we solve the eigenvalue problem exactly; however, the variational results are
dependent upon this exchange. Therefore, we must do the same variational analysis on a
system whoseJ2-values andJ3-values are exchanged as well as on a system with a given
parameter(J1, J2, J3), and must compare the two sets of results. In the present analysis, the
ground-state energy is always lower if we exchangeJ2 andJ3 in the case whereJ2 > J3.

We consider three cases which only differ in the choice ofJ1. J3 is always set equal
to 1, andJ2 is a variable that we move from+∞ to −∞. Case (a):J1 = 0 andJ3 = 1
is the bond-alternation model. It includes the pure dimer model atJ2 = 0, and the uniform
S = 1/2 AF spin chain atJ2 = 1. Case (b):J1 = 0.5 andJ3 = 1 includes the M–G model
at J2 = 1. Case (c):J1 = 1 andJ3 = 1 includes the isotropic ladder model atJ2 = 0.
In addition, these three cases include a pure dimer model atJ2 = +∞, and theS = 1 AF
chain atJ2 = −∞. Let us call the singlet dimer state on theJ2-bonds theJ2-singlet, and
also that on theJ3-bonds theJ3-singlet hereafter, for simplicity.

Figure 2 shows theJ2-dependence of the ground-state energy,ε0, compared with the
numerical diagonalization results for a system withN = 12 under periodic boundary
conditions. The variational estimates are made by exchangingJ2 and J3 in the region
J2 > J3. The energy agrees with the numerical values fairly well, particularly in the
dimer region whereJ2 > J3 = 1. The difference becomes visible in the Haldane region
(J2 < J3 = 1) asJ1 increases. The energy takes a maximum value at the fully frustrated
point J2 = J3 = 1 in figures 2(b) and 2(c). AsJ2 goes away fromJ3 = 1, the energy
decreases, because the frustration is relaxed. It should be noted that this energy stabilization
is stronger in the dimer region as compared with the Haldane region. Thus, we point out
here the possibility that the ground states of the real double-spin-chain compounds are also
easily stabilized to the dimer ground state by a lattice dimerization similar to the spin–Peierls
system corresponding to the case shown in figure 2(a).

Next, we calculate the local bond-spin value, defined by

〈S(J2)〉 =
〈
σn · τ n + 3

4

〉
= b2 (15)

〈S(J3)〉 =
〈
σn+1 · τ n + 3

4

〉
= −b

2

3
(b +

√
3(1− b2))2+ 3

4
. (16)

Here,S(Ji) denotes the local spin expectation value along theJi-bond. Since a local bond-
spin value is not a good quantum number, we have to define it by using a projection operator
which selects the local triplet component from the composite spin magnitude. The bond
correlationσn · τ n+ 3/4 serves as this projection operator forS(J2). S(Ji) takes the value
zero for theJi-singlet state, while the other bond spin takes a value of 3/4.

Figure 3 shows theJ2-dependence ofS(J2) andS(J3). The lines show the variational
estimates stated above, and the symbols show the numerical diagonalization results for
N = 12.

Consistency between the variational estimates and the numerical results is generally
excellent, except forS(J3) of figure 3(c). In figure 3(a), i.e. the bond-alternation model,
there are two trivial pure dimer points. The ground state is theJ2-singlet state atJ2 = +∞,
and is theJ3-singlet state atJ2 = 0. These two points are equivalent to each other if we
exchange theJ2-bonds and theJ3-bonds. Thus, the local bond-spin values are symmetric
about the isotropic point atJ2 = 1, where the model reduces to the uniformS = 1/2 AF
spin chain. TheJ3-singlet state continuously changes to the Haldane state in the limit of
J2→−∞, as is manifested byS(J2) converging to 1. In the model that includes the M–G
model, figure 3(b), the ground state is exactly theJ2-singlet forJ2 > 1, whereS(J2) = 0
andS(J3) = 3/4. S(J2) andS(J3) show a sudden jump atJ2 = 1, since theJ3-singlet is
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Figure 3. The local bond-spin value on theJ2-bond (S(J2)) and that on theJ3-bond (S(J3))
plotted againstJ2/(1− J2) for J2 < 0, and againstJ2/(1+ J2) for J2 > 0, where (a)J1 = 0
andJ3 = 1 (the bond-alternation model), (b)J1 = 0.5 andJ3 = 1 (including the M–G model
at J2 = 1), and (c)J1 = 1 andJ3 = 1 (including the isotropic ladder model atJ2 = 0). The
lines show the variational estimates. Triangles and circles show the numerical diagonalization
results forS(J2) andS(J3) of a system with 24 spins under periodic boundary conditions.

degenerate with theJ2-singlet at this point. The situation is rather different in figure 3(c),
since theJ3-singlet never becomes the ground state in this case.S(J3) increases from 3/4
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asJ2 decreases from+∞, until it suddenly decreases at the symmetric point,J2 = J3 = 1.
S(J2) now takes nearly the triplet value atJ2 ∼ 1. At the isotropic ladder point where
J2 = 0, the diagonal spins of the ladder almost form a triplet state, sinceS(J2) ∼ 1, and
the rung spins are far from the singlet state, sinceS(J3) ∼ 0.3.

We can also estimate the string order parameter of den Nijs and Rommelse,Ostr [22],
and the dimer order parameter,Odim, defined by Hida [12, 13]. They are

Odim(J3) = lim
|m−n|→∞

−4

〈
U−1τ zm exp

[
iπ

n−1∑
k=m+1

Szk

]
σ znU

〉
= lim
|m−n|→∞

4〈σ zmσ zn 〉 = 4〈σ zm〉2 =
4b2

9
(b +

√
3(1− b2))2 (17)

Ostr(J2) = lim
|m−n|→∞

−
〈
U−1Szm exp

[
iπ

n−1∑
k=m+1

Szk

]
SznU

〉
= lim
|m−n|→∞

〈SzmSzn〉 = 〈Szm〉2 =
4

9
b4.

(18)

In addition, Odim(J2) = 1 only when b = 0, and otherwise it vanishes;Ostr(J3) =
Odim(J2)/4.

Figure 4 shows theJ2-dependence of the dimer and the string order parameter in
the ground states of the three cases mentioned above. Symbols denote the numerical
diagonalization results forN = 12, and lines show the variational estimates. The order
parameters both on theJ2-bonds and on theJ3-bonds are plotted in the same figure. For
example,Ostr(J2) is defined by equation (18) when we consider the bond-spinSn to be
along theJ2-bond, andOstr(J3) is defined withSn along theJ3-bond. Hence,Ostr(Ji)

denotes the den Nijs–Rommelse string order as regards the triplet state of eachJi-bond. On
the other hand,Odim(Ji) expresses the dimer order on eachJi-bond. We exchangedJ2 and
J3 for J2 > J3, as mentioned before.

Consistency of the variational estimates with the numerical results is excellent, except in
the limit of J2→−∞. The variation gives the pure VBS state, while the numerical results
converge to the correctS = 1 value. This is because we used a single-site approximation
of the transformed Hamiltonian in the variation, and therefore our estimates always become
worse when the correlation length of the ground state is rather long, as is the case in
the Haldane state. Positive values ofOdim(J2) in the regionJ2 < J3 = 1 constitute the
finite-size effect, and should vanish in the thermodynamic limit.

In the system of figure 4(a), i.e., the bond-alternation model,Odim = 1 at the two pure
dimer points. The variational estimates are particularly good near these two points because
of the short correlation length, while they become poor near the uniformS = 1/2 chain
point atJ2 = 1 and the uniformS = 1 chain point atJ2 = −∞.

In figure 4(b),Odim(J2) is 1 for J2 > 1, since the ground state is exactly theJ2-singlet.
Ostr(J2) andOdim(J3) are zero in this region. However,Ostr(J3) takes a finite value of 1/4.
This is a natural consequence of the definition of the string order parameter. Thus, it is
not adequate to discriminate between the Haldane phase and the dimer phase on the basis
of the vanishing or non-vanishing of this parameter alone. We should determine the phase
from the value of this parameter, ranging from 1/4 in the dimer state to 0.37 in the Haldane
state. Therefore, it is very difficult to draw a phase boundary line in most cases. AsJ2

decreases from 1, theJ3-singlet remains the ground state by changing continuously towards
the Haldane state in the limit ofJ2 → −∞, as is observed in the behaviour ofOdim(J3)

andOstr(J2).
The inconsistency between the variational estimates and the numerical results in
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Figure 4. Ostr andOdim on theJ2-bonds (circles) and those on theJ3-bonds (triangles) are
plotted againstJ2/(1− J2) for J2 < 0, and againstJ2/(1+ J2) for J2 > 0, where (a)J1 = 0
andJ3 = 1 (the bond-alternation model), (b)J1 = 0.5 andJ3 = 1 (including the M–G model
at J2 = 1) and (c)J1 = 1, andJ3 = 1 (including the isotropic ladder model atJ2 = 0). Solid
(broken) lines show the variational estimates forOstr (Odim).

figure 4(b) is larger as compared with that of (a), and becomes distinct in (c). The difference
in figure 4(c) is already clear in the vicinity ofJ2 = 1, and persists untilJ2 → −∞. The
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variation can explain the behaviour of the order parameters only qualitatively in this plot.
For example,Ostr(J2) is almost independent ofJ2 in the regionJ2 < 1.

Looking at figures 3 and 4, we notice that the convergence to the Haldane state becomes
faster asJ1 increases from 0 to 1. For example,Ostr(J2) for figure 4(c) takes a value
appropriate to the Haldane state even in the isotropic ladder model (J2 = 0). This evidence
may allow us to consider that the ground state of the isotropic ladder model is more like
the Haldane state than the dimer state.
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Figure 5. The symmetry of the model with respect to the spin exchange ofσn and τ n for
(a) J1 = 0, J3 = 1, (b) J1 = 0.5, J3 = 1, (c) J1 = 1, J3 = 1, and (d) the ladder model with
both interaction bonds diagonal. Bold lines denote theJ2-bond, thin lines denote the bonds with
magnitude 1, and broken lines denote those with magnitude 0.5. (e) The string and the dimer
order parameters of model (d).

We relate this tendency to the symmetry of the model with respect to the exchange
of two spins that couple to form theS = 1 state in the Haldane limit. In general, this
spin-exchange symmetry is necessary to realize the Haldane state, since eachS = 1 unit
should have this symmetry. Figure 5 shows a consequence of an exchange of the spins
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σn andτ n for the three models that we have considered in this paper. Bold lines denote
theJ2-bonds, thin lines denote the bonds of magnitude 1, and broken lines denote those of
magnitude 0.5. These models only have this symmetry in the limit ofJ2→±∞, and thus
the Haldane state becomes the exact state only in this limit. However, the number of bonds
that are invariant before and after this operation increases asJ1 increases from 0 to 1. In
this sense, case (c), whereJ1 = 1 andJ3 = 1, is closer to the spin-exchange symmetry.

On the other hand, the ladder model with both interactions diagonal as depicted in
figure 5(d) has this symmetry for arbitraryJ2-values. As shown in figure 5(e), the first-
order transition from the dimer phase to the Haldane phase occurs atJ2 = 1.401 48 [15]. In
this figure, the symbols denote the numerical results for a system with 20 spins. Negative
values of the dimer order constitute the finite-size effect. Therefore, we conclude that the
convergence to the Haldane state becomes faster as the system gains this spin-exchange
symmetry. At the same time, our variational estimates fail more quickly.
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Figure 6. The variational estimates of the spin expectation of a domain wall in the excited state
are plotted againstJ2/(1−J2) for J2 < 0, and againstJ2/(1+J2) for J2 > 0, where (a)J1 = 0
andJ3 = 1 (the bond-alternation model), (b)J1 = 0.5 andJ3 = 1 (including the M–G model
at J2 = 1), and (c)J1 = 1 andJ3 = 1 (including the isotropic ladder model atJ2 = 0).

3. The excited state

The elementary excitation in one dimension is intrinsically a state with one domain wall
between the degenerate ground states. Within the present variational scheme, we consider
the following one-domain-wall state under open boundary conditions:

|91〉 =
∑
i

Ci

( i∏
n=1

|n(α, β, γ, b)〉
N∏

n=i+1

|n(α′, β ′, γ ′, b)〉
)
≡
∑
i

Ciψi. (19)

Here, the parameter sets(α, β, γ ) and (α′, β ′, γ ′) are any two of the four possible choices
given in equation (12), andb is determined by equation (13). For example, we use the
sets(α, β, γ ) = (

√
2/3,
√

1/3, 0) and (α′, β ′, γ ′) = (−√2/3,
√

1/3, 0). Of course, the
choice does not affect the final results. A domain wall is located between theith site and
the (i + 1)th site. This definition of the trial function becomes equivalent to the solitonic
excitation of F́ath and Śolyom [28] in the AKLT model [29]. The spin expectation of the
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domain wall is defined by

〈ψi |τ i · σi+1+ 3

4
|ψi〉 = b2

9
(b +

√
3(1− b2))2+ 3

4
= 1

4
Odim+ 3

4
. (20)

Figure 6 shows theJ2-dependence of this value for the three different cases discussed in
the previous section. The excitation becomes a local triplet at the domain wall when the
ground state is exactly the singlet dimer state. As the ground state changes to the Haldane
state, the local triplet smears out, and consequently the local spin value at the domain wall
decreases, since the total spin of the excited state is always 1 in this system. In the Haldane
limit, it takes a value of 31/36∼ 0.861.

The basis relations and the matrix element of the Hamiltonian are calculated as

〈ψi |ψj 〉 =
(

1− 4

3
b2

)|i−j |
≡ (−a)|i−j | (21)

〈ψi |H|ψj 〉 = [Eg+ (|i − j | − 1)E1]〈ψi |ψj 〉 + δij [E1+ E2] (22)

with

Eg = ε0N (23)

E1 = −b
2

3

{
(8b2− 4)J1+

[
6ab + (b +

√
3(1− b2))5

(b +
√

3(1− b2))3
− 1

]
J3

}
(24)

E2 = 4b2

9

[
6aJ1+ (b +

√
3(1− b2))2J3

]
. (25)

The variation〈91|H|91〉/〈91|91〉 can be calculated by Fourier transformation,|φk〉 =∑
n exp[ikn]|ψn〉, since the denominator〈91|91〉 is diagonalized in the thermodynamic

limit. Then the energy gap is obtained with respect to the wavenumber of the domain wall
k as

Eex(k) = 〈φk|H|φk〉〈φk|φk〉 − Eg

= − E1

[
1+ 2a

1− a2

(1+ a2) cosk + 2a

1+ 2a cosk + a2

]
+ (E1+ E2)

1+ 2a cosk + a2

1− a2

(26)

wherea is defined by equation (21).
We plot this estimate withk = 0 and k = π in figure 7, and compare it with the

numerical results.
In the vicinity of the M–G point,(J1, J2, J3) = (0.5, 1, 1), the lowest excitation is a

kink–antikink state, which consists ofN − 1 singlet dimer pairs and two freeS = 1/2
spins [3]. We call these free spins a kink and an antikink. In such a case, we try another
variation. These two free spins are mobile in general, and thus we have to consider the
following trial function:

|ψij 〉 =
i−1∏
n=1

|n(0)〉
j−1∏
n=i
|n(α, β, γ, b)〉

N∏
n=j
|n(0)〉 (27)

under periodic boundary conditions. Here,|n(0)〉 stands for the singlet dimer state on the
σn–τ n bond withb = 0. |n(α, β, γ, b)〉 becomes another singlet dimer state on theσn+1–
τ n bond whenb = √3/2 at the M–G point. Therefore a kink or an antikink should exist
at the domain wall.
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Figure 7. The J2-dependence of the energy gap obtained by the numerical diagonalization
(symbols), and the variation (lines) plotted againstJ2/(1−J2) for J2 < 0, and againstJ2/(1+J2)

for J2 > 0, where (a)J1 = 0 andJ3 = 1 (the bond-alternation model), (b)J1 = 0.5 andJ3 = 1
(including the M–G model atJ2 = 1), and (c)J1 = 1 andJ3 = 1 (including the isotropic ladder
model atJ2 = 0). We also plot the estimate of the kink–antikink variation (dash–dot line) in (b).

In the1 chain, a kink becomes localized, and thus the problem can be reduced to a
one-body problem of a moving antikink. We can solve it exactly, and the wave function is
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given by the Airy function [26, 27]. Here, we solved this variation only numerically for a
finite system withN = 30. The results are also plotted in figure 7(b) as a dash–dot line.

The relative motion of this two-body problem is the same as that of the one-body
problem of the1 chain. That is, we obtain the same equation if we set one free spin at
the origin and rewrite the variational problem with respect to the one-body problem of the
other free spin. This is also verified by the fact that the wave function obtained numerically
is well fitted by the Airy function, and that the gap enhancement,Egap(J2)−Egap(J2 = 1),
is almost equal to that of the1 chain; it obeys a power law with exponent 2/3 [26, 27, 30].
Of course, the gap itself cannot be obtained correctly from just the relative motion; the
motion of the centre of mass also has to be taken into account.

Figure 7 shows theJ2-dependence of the energy gap estimated above for the cases with
(a) J1 = 0, J3 = 1, (b)J1 = 0.5, J3 = 1, and (c)J1 = 1, J3 = 1. The local triplet excitation
with k = π is depicted by solid lines, that withk = 0 is depicted by broken lines, and the
kink–antikink excitation is depicted by a dash–dot line in figure 7(b). The lowest gap in
the k = π sector and that in thek = 0 sector calculated by the numerical diagonalization
of anN = 12 lattice are depicted by circles and by triangles, respectively. The variational
estimates withk = π are quite excellent for all of the plots. We consider that this is because
the local approximation is usually good for the wavenumberπ , which changes the phase
of the wave function by only one lattice spacing. The only difference is that the local
triplet variation converges to the VBS value in theJ2 → −∞ limit, while the numerical
one converges to the Haldane value. When the ground state is the exact singlet dimer state
(J2 > J3 = 1 in figure 7(b)), our variational excitation is a local triplet state, and thus the
gap value is equal toJ2 with no dispersion. On the other hand, the estimates withk = 0
only explain the gap behaviour qualitatively, and become worse with an increase ofJ1.
They are only valid near the pure dimer points in figure 7(a). In the vicinity of the gapless
point whereJ2 = J3 = 1 (the S = 1/2 chain), our variational scheme breaks down, and
thus the gap estimation should be done by another method. For example, the bosonization
technique [31–33] gives

1

2

(
18

π

)1/3 |2x − 1|2/3
1− x (28)

with x = J2/(1+ J2), and agrees with our numerical results very well. This is plotted
as a dash–dot line in figure 7(a). The variational estimate of kink–antikink type is also
consistent with the numerical results. We can consider that it is valid as long as the singlet
dimer state is exactly or approximately the ground state.

4. Summary and discussion

We have investigated the generalS = 1/2 double-spin-chain (J1–J2–J3) model by means
of a non-local unitary transformation and a variational method. The model includes the
dimer model and the Haldane system as its two extremes. A ground-state change occurs
at the symmetric point,J2 = J3 = 1, as is manifested by the string and the dimer order
parameters. The ground state forJ2 < J3 continuously changes to the Haldane state in the
J2 → −∞ limit, and the other ground state, forJ2 > J3, becomes the dimer state in the
J2→∞ limit. The two states are degenerate at the symmetric point.

We relate the convergence to the Haldane state to the symmetry of the exchange of
spins that will couple to theS = 1 state in the Haldane limit. As the system gains some of
this symmetry, the convergence of the ground state to the Haldane state becomes faster, or,
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in other words, the transition becomes close to a first-order one. In the case of the system
with full symmetry, the transition is strictly of first order [15].

The excited state is formulated in terms of a domain wall between two of the fourfold-
degenerate ground states. In the dimer region, this domain wall is equivalent to a local
triplet. We obtained an explicit form for the dispersion relation of the gap for arbitrary
J1, J2, andJ3. That is, we first calculate the value ofb by means of equation (13) for a
given (J1, J2, J3). Then, the dispersion is given by equation (26) witha = 4/3b2 − 1. We
confirmed that our variational estimate is generally good in the dimer region,J2 > J3, and
is especially excellent for the excited state withk = π . The lowest excitation near the M–G
point is well explained by a kink–antikink state [3, 26, 27].

Our variation employs the single-site approximation in the transformed system, which
of course becomes worse when the ground state has a rather long correlation length, e.g. as
in the Haldane state. Therefore, our estimate fails more quickly with the convergence to
the Haldane system. We must go beyond the single-site approximation for the sake of
quantitative agreements in this region.

Finally, we point out the possibility that the ground state of a real compound is stabilized
by a lattice dimerization to the dimer state, since its energy stabilization is quite significant,
as we observed in figure 2. In fact, the susceptibility of KCuCl3 is quantitatively explained
by a single-dimer model withJ = 48.8 K [20]. The situation is similar in the case of
CaV2O5 [18].
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